复纳科学仪器(上海)有限公司
访问手机展位
微信小程序展位
留言咨询
(我们会第一时间联系您)
关闭
留言类型:
     
*姓名:
*电话:
*单位:
Email:
*留言内容:
(请留下您的联系方式,以便工作人员及时与您联系!)
认证信息
金牌会员 第 4
名 称:复纳科学仪器(上海)有限公司
认 证:工商信息已核实
访问量:475177
手机网站
扫一扫,手机访问更轻松
公众号
技术文章
原子层沉积(ALD)技术在锂电材料中的应用(一):电极粉末包覆的必要性(上)

复纳科学仪器(上海)有限公司  2024-04-02  点击157次

锂电池电极由各种类型的粉末制备合成,对粉末材料表面进行包覆已经成为提高电池性能的有效策略。尤其在固态电池中,固体电解质颗粒(SSA) 和电极组合之间的界面兼容性问题仍然存在,通过界面涂层可有效地解决这一问题。


因此,电极表面工程作为一项新兴技术,有望提高电池的性能和安全性。原子层沉积(ALD)技术已被证明是在亚纳米尺度上制造无机薄膜的高效方法,可在平面甚至高曲率的颗粒表面控制薄膜厚度以及均匀性。


090448_145103_jswz.png

原子层沉积(ALD)包覆能保证超薄的均匀涂层


01

电极材料包覆的必要性

在充放电周期中,大多数电池遇到的常见的与电极相关的问题是:电极体积的巨大变化导致的机械疲劳以及不稳定的固体电解质界面(SEI)和电解质界面(CEI)层的形成。


无论是由于 SEI 自身的不稳定性质还是电极的体积波动,都可能导致电解质和电极表面之间的不间断接触,进而引发的副反应会消耗电解质,并使电极退化,最终导致电池失效。


此外,在循环过程中,稳定的 SEI 在界面处的绝缘性质的积累会增加整体电池电阻,导致更高的过电位和容量衰减。通过沉积超薄涂层作为人工 SEI/CEI (ASEI/ACEI)来改变电解质电极界面(EEI)是解决电池界面问题的有效策略。


090542_839492_jswz.png

界面问题是导致电池失效的重要因素


02

选择粉末涂层还是极片涂层

实际使用时,电极粉料混合添加剂制成浆料,并进行涂布形成极片。电解质渗透到电极的多孔结构中,一方面有利于离子的传输,另一方面也为电解质的分解和 SEI 的形成提供了更大的表面积。大的表面积导致较差的 SEI 钝化,进而刺激电解质分解,最终使得循环寿命很差。因此结合实际情况衍生出两种涂层改性的策略:


1 直接应用于成品电极的表面的涂层技术(DC:Direct Coating)

2 对电极颗粒先进行修饰改性

(PC:Particle Coating)


微信图片_20240402090407.png

左:颗粒包覆电极 右:平面涂层电极


为了便于识别通过这两种涂层改性策略获得的电极,我们将平面涂覆电极称为“DC”电极,将粉末涂覆电极称为“PC”电极。而原始的未涂层电极被称为“UC”电极。下图展示了电极和电解质中电子的相对能量以及 UC 电极可以达到热力学稳定的氧化和还原电位区域。这是因为在还原电位 μA 以上,负极会还原电解质,而在氧化电位 μC 以下,正极则会氧化电解质。如果添加钝化层(例如在 DC 和 PC 电极的情况下)阻碍 SEI 的电子转移,则可以防止这种不稳定的氧化还原反应,从而维持电极的稳定。


090710_332042_jswz.png

电极的热力学稳定区域的能量图示意图,还原电位以上和氧化电位以下的区域需要 ACEI 来保持动力学稳定


Jung 等人在早期报告中将钴酸锂(LiCoO2)的 UC 阴极与 PC 和 DC Al2O3 包覆的 LiCoO2 阴极进行了比较。在报告中,PC 比 DC 表现出更好的容量保持率。之后,Jung 等人报道了使用 DC 方法改性的 LiCoO2 和天然石墨(NG)电极比 PC 电极具有更好的循环性能。同样,在一些报告中认为 PC 电极具有更好的性能,特别是在高温环境下;也有一些报告则认为 DC 策略更好。


综上所述,直接对涂布好的电极进行涂层修饰的路线(DC)似乎有利于绝缘涂层材料,但该方法不适用于较高的沉积温度,因为这会导致极片中的粘结剂分解。


但对于 ALD 工艺而言,过低的沉积温度会导致不均匀性和化学气相沉积(CVD) 产生。因此,需要更高的沉积温度、极薄和更好导电材料涂层的情况下,粉末包覆(PC)策略更可行。


而在实际生产中,极片的涂层制造(DC)依赖卷对卷 ALD 设备的成熟,但目前,量产型卷对卷设备依然有待验证。而类似半导体或光伏 ALD 领域使用的片对片式设备,需要对极片进行裁剪,是否适用于大规模量产,还有待验证。


微信图片_20240402090411.png


微信图片_20240402090413.png

电极极片的卷对卷设备(上)以及传统的批次片对片式 ALD 设备(下)


下篇文章我们将为大家详细介绍粉末原子层沉积(PALD)工艺及其在电极材料包覆中的应用。


03

关于 Forge Nano

Forge Nano 专注于粉末原子层沉积技术(PALD),凭借其专有的 Atomic Armor™ 技术,能够使产品开发人员设计任何材料直至单个原子。Atomic Armor™ 工艺生产的卓越表面涂层使合作伙伴能够释放材料的最佳性能,实现延长寿命、提高安全性、降低成本和优化产品的功能。其科学家团队与广泛的商业合作伙伴合作开发定制解决方案,能够满足任何规模的任何需求,包括从小规模研发和实验室级别到工业规模、大批量生产。


如果您想了解更多关于原子层沉积技术以及 Forge Nano 产品的详细信息与应用案例,或者有 DEMO 包覆、代包覆服务与设备试用的需求,欢迎扫描下方二维码填写信息。


090852_066474_jswz.png

参考文献

【1】Minji Lee, Waheed Ahmad, Dae Woong Kim, Kyu Moon Kwon, Ha Yeon Kwon, Han-Bin Jang, Seung-Won Noh, Dae-Ho Kim, Syed Jazib Abbas Zaidi, Hwiyeol Park, Heung Chan Lee, Muhammad Abdul Basit, and Tae Joo Park, Chemistry of Materials 2022 34 (8), 3539-358

【2】Jung, Y. S.; Cavanagh, A. S.; Dillon, A. C.; Groner, M. D.; George, S. M.; Lee, S.-H. Enhanced stability of LiCoO2 cathodes in lithium-ion batteries using surface 

联系电话
关闭
虚拟号将在180秒后失效,请在有效期内拨打
为了保证隐私安全,平台已启用虚拟电话,请放心拨打.(暂不支持短信)
使用微信扫码拨号
是否已沟通完成
您还可以选择留下联系电话,等待商家与您联系
*需求描述:
*单位名称:
*联系人:
*联系电话:
Email:
(请留下您的联系方式,以便工作人员及时与您联系!)